## AbstractSubmitted for the Mar98 Meeting of The American Physical Society

Sorting Category: 14.i

Doping Dependence of the Giant Spontaneous Hall Effect in  $La_{1-x}Ca_xCoO_3$  (0.1  $\leq x \leq$  0.5) A. V. SAMOILOV, G. BEACH, C.C.FU, N.-C. YEH, Department of Physics, # 114-36, California Institute of Technology, Pasadena, CA 9112.5, R. P. VASQUEZ, Center for Space Microelectronic '1'ethnology, JPL, California Institute of l'ethnology, Pasadena, ('A 91 109'We report a very large spontaneous Hall effect in ferromagnetic La<sub>1-x</sub>Ca<sub>x</sub>CoO<sub>3</sub>epitaxial films and ceramics. The spontaneous Hall effect is strongest for x=0.2, which is a doping level close to the magnetic percolation threshold in  $La_{1-x}Ca_xCoO_3$ . Except near the magnetic percolation threshold, the longitudinal] resistivity of La<sub>1-x</sub>Ca<sub>x</sub>CoO<sub>3</sub> decreases with increasing field. Peculiar temperature-dependent magnetoresistance occurs in the sample with x=0.2. The normal Hall coefficient  $R_0$  is much smaller than the spontaneous Hall coefficient. We estimate a lower limit for the carrier density  $n = 1/(\text{Roe}) > 3x \cdot 10^{28} \text{m}^{-3}$ . The low-f-field slope of the Hall resistivity reaches a maximum value  $\rho_{xy}/(\mu_0 H) \approx 2 \times 10^6 \,\mathrm{m}^3/\mathrm{C} = 200$  $\mu\Omega$ cm/T for x=0.2 below the Curie temperature. The large magnitude of  $\rho_{xy}/(\mu_0 H)$  may be used for sensitive low-field magnetometers. We suggest that the coexistence of high- and low-spin configurations in the perovskite cobaltites, which gives rise to the magnetic percolation behavior, may be responsible for the giant Hall effect.

<sup>1</sup>This work is supported by NASA/OSS

|   |                       | Arkadii Samoilov                   |
|---|-----------------------|------------------------------------|
| X | Prefer Oral Session   | samoilov@cco.caltech.edu           |
|   | Prefer Poster Session | California Institute of Technology |
|   |                       |                                    |

Date submitted: December 10, 1997 Electronic form version 1.2